首届顶科协奖解读从乔丹获奖看多学科交叉融

·迈克尔·乔丹教授是机器学习领域的先驱,通过在机器学习、概率学、统计学以及图模型这四者间建立联系,为机器学习奠定了数学与计算基础。他是真正将机器学习用于特定主题模型,如文本分析、图像分析的开创者之一。过去十年里,机器学习在诸多领域的应用得到爆炸式发展,如自动驾驶汽车、X光片分析、蛋白质折叠预测等,都离不开基于乔丹研究所塑造的理论框架。

·乔丹说:“我们要学会跳出学术界,始终记得自己不仅仅是数学家,也是现实社会中涌现出的现实问题的解决者。”

9月29日,年第一届世界顶尖科学家协会奖(以下简称“顶科协奖”,WLAPrize)在上海揭晓。其中“智能科学或数学奖”被授予美国计算机科学与统计学家迈克尔·I·乔丹(MichaelI.Jordan),以表彰他“对机器学习的理论基础及其应用作出了根本性贡献”。每位获奖者获得奖金万元人民币。

美国加州大学伯克利分校电子工程与计算机科学系、统计学系杰出冠名教授迈克尔·I·乔丹。迈克尔·I·乔丹出生于年,是美国国家科学院院士、美国国家工程院院士和美国艺术与科学院院士,现任加州大学伯克利分校电子工程与计算机科学系、统计学系杰出冠名教授。主要研究方向为人工智能、生物系统与计算生物学、控制、智能系统和机器人、信号处理、机器学习等。

“迈克尔·乔丹教授是机器学习领域的先驱,通过在机器学习、概率学、统计学以及图模型这四者间建立联系,为机器学习奠定了数学与计算基础。这些领域的相互联系,不仅有助于促进机器学习领域的研究和发展,同时还提升了相关领域研究工作的质量和数量。”顶科协奖“智能科学或数学奖”遴选委员主席、年图灵奖得主约翰·轩尼诗(JohnHennessy)教授介绍。

机器学习是人工智能的基石,乔丹在机器学习领域工作了近30年,是真正将机器学习用于特定主题模型,如文本分析、图像分析的开创者之一。过去的十年里,机器学习在诸多领域的应用得到爆炸式发展,如自动驾驶汽车、X光片分析、蛋白质折叠预测等,都离不开基于乔丹研究所塑造的理论框架。

“机器学习是人工智能和数据科学的核心技术之一,计算机科学、统计学、数学优化等多学科交叉融合为机器学习提供了坚实的基础。迈克尔·欧文·乔丹(MichaelIrwinJordan)指出了机器学习与统计学的深刻联系,并长期致力于推动两个学科的深度交叉融合。”清华大学长聘副教授龙明盛对澎湃新闻(


转载请注明:http://www.aierlanlan.com/rzdk/5150.html